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Abstract. We present a holistic optimization of the ADER-DG finite

element software SeisSol targeting the IntelR© Xeon Phi
TM

x200 pro-
cessor, codenamed Knights Landing (KNL). SeisSol is a multi-physics
software package performing earthquake simulations by coupling seismic
wave propagation and the rupture process. The code was shown to scale
beyond 1.5 million cores and achieved petascale performance when using
local time stepping for the computationally heavy seismic wave propa-
gation. Advancing further along these lines, we discuss the utilization of
KNL’s core features, the exploitation of its two-level memory subsystem
(which allows for efficient out-of-core implementations), and optimiza-
tions targeting at KNL’s 2D mesh on-die interconnect. Our performance
comparisons demonstrate that KNL is able to outperform its previous

generation, the IntelR© Xeon Phi
TM

coprocessor x100 family, by more
than 2.9 × in time-to-solution. Additionally, our results show a 3.4 ×
speedup compared to latest IntelR© XeonR© E5v3 CPUs.

Keywords: high-order, vectorization, ADER, discontinuous Galerkin,
finite element method, Intel Xeon Phi, Knights Landing, KNL

1 Introduction

The understanding of earthquake dynamics is greatly supported by highly re-
solved, coupled simulations of the rupture process and seismic wave propagation.
Requirements in resolution are pushed by detailed discretizations of complex ge-
ometric features, accurate representations of material heterogeneities and the
need for resolved, high frequencies. This grand challenge of seismic modeling
requires a large amount of computational resources. Optimal utilization by soft-
ware is imperative.

Therefore, in addition to challenges from a numerical perspective, software
packages that tackle this grand challenge, have to exploit the capabilities of
state-of-the-art supercomputing architectures. In the past, simulations of seis-
mic wave propagation used some of the largest supercomputers worldwide (e.g.
[2, 3, 7–9, 17–19, 22, 29, 30]). However, only very few of the performed landmark-
simulations coupled dynamic rupture propagation directly to seismic wave prop-
agation (e.g. [10,17]). Taking the total number of simulation environments in the
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SCEC/USGS Spontaneous Rupture Code Verification Project [16] into account, a
gap between latest physics-driven developments and HPC capabilities is visible.
Reason is the required, high degree of algorithmic development, optimization
and testing required to exploit all levels of parallelism offered by state-of-the-art
supercomputing architectures [3].

The SeisSol software package4 is the topic of this paper and uses, among
other software (e.g. [1, 28]), the Discontinuous Galerkin (DG)-Finite Element
Method (FEM) for spatial discretization. Together with the use of unstructured
tetrahedral meshes and the Arbitrary high-order DERivatives (ADER) scheme in
time, this allows for accurate discretization of fault systems, surface topography
and material heterogeneities [13,15,23].

In this paper, we present various improvements of the software package Seis-
Sol for the new Intel Knights Landing architecture (KNL). To maximize applica-
tion performance, equaling shortest time-to-solution, our optimizations address
KNL’s major enhancements over the current architecture, code-named Knights
Corner, by a) efficiently using both 512-bit wide vector processing units (VPU)
per core, by b) leveraging the low-bandwidth DDR4 memory and the high-
bandwidth in-package multi-channel DRAM (MCDRAM) by an out-of-core ap-
plication memory management, and finally by c) balancing the on-die intercon-
nect mesh-traffic for optimal throughput. In addition to our hardware-aware im-
plementation, we demonstrate that advanced numerics and solvers are required
for reduced time-to-solution. Here, SeisSol’s computationally heavy wave prop-
agation component was recently enhanced by a high performance Local Time
Stepping (LTS) scheme to capture time step variations, commonly present in
unstructured tetrahedral meshes [6]. Although the irregularities introduced by
LTS normally contradict with the demands of modern and increasingly regular
hardware architectures, such as KNL, we will demonstrate that our implemen-
tation is capable of running LTS efficiently on many-core processors with wide
vector units.

2 The Knights Landing Architecture

The Intel Xeon Phi x200 processor family, based on the KNL architecture, is
the successor of the Intel Xeon Phi coprocessor introduced in 2012. It is fully
binary compatible with latest Intel Xeon processors code-named Haswell and
Broadwell, e.g. Xeon E5v3 and E5v4, 5 and is the first chip that offers support
for the AVX512F, AVX512CD, AVX512PF and the AVX512ERI instruction set
extensions, which double the width of Intel Architecture’s (IA) vector computing
capabilities. AVX512F and AVX512CD instructions will be also available on fu-
ture Intel Xeon processors and increase the number of programable 512-bit wide
vector-registers to 32. In contrast to the first generation Xeon Phi coprocessor,
KNL is intended to be operated in self-booted fashion and has therefore no need
for a host processor. An overview of a KNL-based processor is depicted in Fig. 1.

4 https://github.com/SeisSol/SeisSol, git-tag 201511 was used in this paper
5 TSX instructions, however, are not considered to be legacy x86 instructions.
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Fig. 1. Architectural overview of KNL: schematic die layout including the 2D-mesh of
tiles and MCDRAM MC, DDR4 MC, IIO agents incl. a zoom into a tile.

The following descriptions are based on [26, 27], which disclosed many detailed
architectural information of KNL.

KNL introduces many changes compared to KNC: up to 36 computing tiles
(housing two cores with a shared L2 cache), 2 DDR4-2400 memory controllers
(MC), 8 MCDRAM controllers (MCDRAM MC, accessing up to 16 GB in-
package high-bandwidth memory) and a PCIe rootport with 36 PCIe3 lanes.
All components are connected by a 2D mesh to ensure scalable communica-
tion within the die. Each DDR4 memory controller handles 3 channels with one
DIMM each, allowing for up to 384 GB of system memory at 90 GB/s. The
combined bandwidth of the eight high-bandwidth memory controllers exceeds
490 GB/s.

The computational heart of KNL is formed by an array of tiles. Each tile
comprises two cores that share an 1 MB L2 cache and a Cache/Homing Agent
(CHA). The latter one holds parts of a distributed tag directory which is used
to maintain coherency across all L2 caches of all tiles. The cores are based on
the Intel R© Atom

TM

architecture code-named Silvermont [20], but offer many en-
hancements for HPC workloads. The most important one is the tighly coupled
floating point unit (FPU) implemented by two 512-bit wide vector processing
units (VPU), which support the aforementioned AVX512 instruction set exten-
sions. Additionally, the cores feature larger L1 caches (32 KB each for data and
instructions), more aggressive out-of-order execution and optimized support for
huge pages. The core itself is two-issue-wide at instruction level (decode, re-
tire) and supports up to six concurrent micro operations (2 VPU-, 2 memory-,
2 integer-operations). Thus, a single thread per core can utilize the full VPU-
performance. The higher execution width is needed to optimally load the ma-
chine, e.g. to handle bursts after cache misses.

KNL’s mesh can be operated in three different cluster modes which are se-
lectable at boottime. As pointed out above, each tile holds a fraction of the dis-
tributed tag directory. The goal of KNL’s cluster modes is to provide different
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levels of affinity between the requesting tile, the tile which holds the correspond-
ing tag entry, and the memory controllers. In the so-called ALL2ALL mode no
affinities are enforced. This has the advantage that no explicit partitioning of
memory controllers is required. However, this mode has also higher latencies as
packages might travel through the entire chip. In QUADRANT mode the mesh is
divided into four logical quadrants and an affinity between the tag directory and
the memory controller is created by placing both in the same quadrant. Finally,
Sub-NUMA-Clustering (or SNC4) is an extended version of the QUADRANT
mode. Here, the four quadrants are exposed via NUMA domains to the OS such
that applications can optimize memory access latencies even further.

KNL’s memory subsystem is based on two different technologies. For ca-
pacity a 6-channel DDR4 is provided. For performance an up-to 16 GB large
high-bandwidth in-package MCDRAM is provided. The MCDRAM can be used
in different modes. The directly-mapped CACHE mode backs up the DDR4
memory. For applications that stay local or have a memory consumption of less
than 16GB, this is a simple solution to get nearly all benefits from the high-
bandwidth memory. Hence CACHE mode introduces an additional hierarchy,
MCDRAM cache-misses add latency to the corresponding accesses. The second
mode is the so-called FLAT mode. Here, the MCDRAM is exposed as an ad-
ditionally NUMA domain in the physical address space and the programmer
can explicitly request memory in this region by using close-to-metal libnuma or
Intel’s memkind6 library. Note that the default memory in this mode is DDR4,
such that the MCDRAM cannot get polluted by OS housekeeping. Finally, the
HYBRID mode is a mixture of the CACHE and FLAT mode.

3 Computational Core

SeisSol solves the elastic wave equations, a linear system of partial differential
equations with variable coefficients, in stress-velocity formulation:

qt +Ax1qx1
+Ax2qx2

+Ax3qx3
= 0. (1)

q(x, t) = (σ11, σ22, σ33, σ12, σ13, σ23, u1, u2, u3)T is the space-time-dependent
vector of quantities containing the six-dimensional stress tensor and the par-
ticle velocities. The quantities q are functions of space x = (x1, x2, x3)T ∈ R3

and time t ∈ R. Here, the three normal stress components are given by σ11,
σ22 and σ33, the three shear stresses by σ12, σ13 and σ23, and the three parti-
cle velocities in x1-, x2-, and x3-direction by u1, u2 and u3. The subscripts in
(1) denote partial derivatives with respect to t and x1, x2, x3. Axc(x) are the
three space-dependent Jacobian matrices (size 9 × 9) carrying the influence of
the heterogeneous material [14]. Extensions of (1) might include source terms,
viscoelasticity, anisotropy, or dynamic rupture physics [12,14,21,23,24].

We obtain the fully discrete formulation by applying the DG-machinery to
(1) for space discretization and the ADER scheme in time [14, 21]. SeisSol uses

6 https://www.github.com/memkind/memkind
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static, unstructured tetrahedral meshes. Let Qk (size BO × 9) summarizes the
per-element Degrees of Freedom (DOFs) for tetrahedral element k. The number
of orthogonal basis functions BO depends on the order of the overall scheme.
In this work we present results for convergence rates O ∈ {2, . . . , 6}, leading to
B2 = 4, B3 = 10, B4 = 20, B5 = 35 and B6 = 56 basis functions. To advance an
element k by its local time step, tnk+1

k = tnk

k +∆tk, we compute the solution of
SeisSol’s time kernel, volume kernel and surface kernel.

Time: The time kernel predicts the evolution of the element-local DOFs
within a time step. Following the Cauchy-Kowalewski procedure, we replace
time derivatives by space derivatives and obtain:

∂d+1

∂td+1
Qk(t0) = −

3∑
c=1

K̂ξc

(
∂d

∂td
Qk(t0)

)
Aξck . (2)

K̂ξc (size BO × BO) are the three unique stiffness matrices, multiplied by the
inverse, diagonal mass matrix in pre-processing. The stiffness matrices and the
mass matrix are defined with respect to a reference element and in terms of
the ξ1ξ2ξ3−reference coordinate system. The matrices Aξck (size 9× 9) are linear
combinations of the Jacobians. We use the DOFs at the current time step tnk

k

as initial condition for the recursive procedure in (2): ∂0/∂t0Qk(t0) = Qnk

k . The
time derivatives Dk = ∂d/∂tdQk allow us to integrate the DOFs in time as
required by the volume and surface kernel:

Tk(t0, t̂, ∆t) =

O−1∑
d=0

(
t̂+∆t− t0

)d+1 −
(
t̂− t0

)d+1

(d+ 1)!
· ∂

d

∂td
Qk(t0). (3)

Integration of the DOFs via (3) is valid in arbitrary intervals [t̂, t̂+∆t] within the
stability limits imposed by the CFL-condition. This translates to the condition
tnk

k ≤ t̂ < t̂ + ∆t ≤ tnk

k + ∆tk, where our element-local time step ∆tk satisfies
the CFL-requirements. Depending on an element’s LTS configuration, it stores
different, permanent time data for read-only access by face-neighboring elements.
Here, an element might store the derivatives Dk, or add the full time integrated
DOFs of the time step, T full

k = Tk(tnk

k , tnk

k , ∆tk), to a permanent buffer Bk, or
store both.

Volume: The volume kernel uses T full
k and computes the net-effects of the

volume integration for an entire, element-local time step ∆tk:

Vk(T full
k ) =

3∑
c=1

K̃ξc
(
T full
k

)
Aξck . (4)

K̃ξc (size BO × BO) are the three non-transposed stiffness matrices, multiplied
with the inverse mass matrix in pre-processing. Analogue to the time derivative
computation (2), Aξck are linear combinations of the Jacobians.

Surface: Our last kernel is the surface kernel, computing the surface inte-
gration of the fully discrete ADER-DG formulation. The surface kernel uses the
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time integrated DOFs T full
k of tetrahedron k and the time integrated DOFs T part

ki
of the four face-neighboring tetrahedrons ki. As discussed at the end of this sec-
tion, T part

ki
integrate face-neighboring derivatives Dki via (3), or directly use the

buffer Bki , containing one or multiple time integrated DOFs of the face-neighbor
ki. For a local face i ∈ {1, . . . , 4} of tetrahedron k, the kernel is given by:

Fk,i
(
T full
k , T part

ki

)
= F̂−,i

(
T full
k

)
Â−,ik + F̂+,i,jk(i),hk(i)

(
T part
ki

)
Â+,i
k . (5)

F̂−,i and F̂+,i,j,h with i, j ∈ {1, . . . , 4} and h ∈ {1, 2, 3} are the 52 unique flux
matrices (size BO×BO), multiplied by the inverse mass matrix in preprocessing.
Here, the used indices jk and hk depend on the location of the elements’ vertices
in the reference element with respect to the shared face. As for the stiffness
matrices and the mass matrix, the flux matrices are defined with respect to the
unique reference element and thus shared among all elements. The matrices Â−,ik

(size 9 × 9) account for the element’s own contribution to the numerical flux,
while Â+,i

k (size 9× 9) carry the contribution of the neighboring elements.
Update: By combining the individual kernels, we obtain the following two-

step update scheme for an element-local time step tnk

k → tnk+1
k :

Q∗,nk+1
k = Qnk

k + Vk −
4∑
i=1

F̂−,i
(
T full
k

)
Â−,ik , (6)

Qnk+1
k = Q∗,nk+1

k −
4∑
i=1

F̂+,i,jk(i),hk(i) (Tki) Â
+,i
k . (7)

Equation (6) summarizes all element-local contribution to the time step, while
Eq. (7) accounts for the contribution of the face-neighboring elements.

Local Time Stepping: We use the Local Time Stepping (LTS) scheme in-
troduced in [6] to account for heterogeneities in the CFL-imposed time step
restrictions. This scheme trades some of the ADER scheme’s flexibility, which in
theory is able to advance each element with its optimal time step, for increased
homogeneity. Here, we determine a fundamental time step equalling the global,
minimal allowed time step of all elements. Afterwards, we assign every element
to a cluster, such that it advances with an integer multiple of this fundamental
time step. Considering the minimal, fundamental time step as ∆t, the clustering
reads as:

C1 = [∆t, r1∆t[, C2 = [r1∆t, r1r2∆t[, . . . , CL = [r1 . . . rL−1∆t, r1 . . . rL∆t[. (8)

With rates rl ∈ N>1, we choose our L clusters to cover the entire interval of
CFL-imposed time steps. In initialization all elements are assigned to their cor-
responding cluster. This work presents results for a clustering with fixed rates
of rl = 2 ∀l. Further, the LTS scheme of [6] limits cluster dependencies and
complex, worst-case memory handling by a normalization step, which lowers the
time step of corner-case elements. All elements of a cluster advance in time with
the cluster’s lower time step limit. Global Time Stepping (GTS) is a special
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case of our LTS scheme with a single cluster having rate r1 = ∞. For GTS we
store, in addition to the DOFs, the time integrated DOFs T full

k , computed for
the element-local contributions in (6). These are then used in the update step
(7) by face-neighboring elements.

In contrast, elements being in LTS-relation with at least one of their face-
neighbors require a more complex handling. Here, an element might have to
sum and store consecutive time integrated DOFs, obtained via (3), over multiple
element-local time steps in a buffer Bk to feed face-neighboring elements with
larger time steps. Conversely, elements having face-neighbors with smaller time
steps store the time derivatives (Dk), obtained using (2), which can then be
evaluated by the face-neighbors in multiple evaluations of (7).

Summarizing, our LTS scheme is more challenging than GTS for the under-
lying hardware due to increased heterogeneity and memory requirements. In [6]
we present full-machine results for a petascale, production character run on
SuperMUC-2 (Haswell architecture). This run achieved 46 % of SuperMUC-2’s
HPL performance. Interpreting these results in terms of time-to-solution, rather
than machine utilization, shows the real value of the LTS scheme. In the case of
the rate-2, production character run, we reached a 4.1× speedup over GTS.

4 Implementation

The discussion of the underlying ADER-DG discretization in SeisSol made clear
that this algorithm is well suited for modern high-performance processors. The
introduced update scheme requires dense compute capabilities (element-local op-
erations in general) as well as high memory bandwidth for selected data struc-
tures (Bki and eventually Dki in the surface integral computation). In the up-
coming subsections we will address how hardware features such as SIMD units
and high-bandwidth memory can be leveraged to run high-order seismic simula-
tions at high efficiencies. We discuss the following (co-)processors (Turbo mode
being disabled):

HSX one Intel R© Xeon R© E5-2699v3 processor with 18 cores, 1.9 GHz at AVX-
base frequency and up to 2.6 GHz Turbo frequency, 64 GB of DDR4-2133

KNC one Intel R© Xeon Phi
TM

7120A coprocessor in native mode with 61 cores,
1.24 GHz base and 1.33 GHz Turbo frequency, 16 GB of GDDR5, one core
reserved for OS

KNL an Intel R© Xeon Phi
TM

7250 processor with 68 cores, 1.2 GHz AVX-base
core-clock and 1.5 GHz all core Turbo frequency, 1.7 GHz mesh-clock, 16 GB
MCDRAM@7.2 GT, 96 GB DDR4-2400, FLAT/(CACHE or QUADRANT),
one core reserved for OS

4.1 Highly-Efficient Small Matrix Kernels

Small sparse and dense double precision matrix multiplication kernels form the
computational back-bone of SeisSol. Single precision is possible but suffers from
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accuracy issues for higher orders [5], we therefore restrict ourselves to double
precision in this work. As pointed out in previous work [5,7,17], the best strategy
is to generate optimal code for these kernels. After an auto-tuning exercise, we
found out that a fully dense backend is the best choice on KNL. Note that
also on latest Intel Xeon processors (HSX) the sparse/dense tuning achieves
only between 12% (order 2) and 1.5% (order 6) improvement with respect to
time-to-solution. For the remainder of this section, we rely on regular BLAS
notation: C = αA · B + βC, C ∈ RM×N , A ∈ RM×K and B ∈ RK×N . lda,
ldb and ldc define the length of the leading memory dimension of each matrix,
and therefore lda ≥ M , ldb ≥ K and ldc ≥ M . Since we only need the simple
cases of α = 1 and β ∈ {0, 1}, we do not discuss the efficient integration of
arbitrary α and β values into our kernels. A generalized version (N 6= 9) of the
presented code generation approach is used in the back-end of the LIBXSMM
open source project7. This library is already used in other scientific applications
(e.g. CP2K [4] or Nek5000 [25]) which demand small matrix multiplications as
well.

As we have discussed the implementation of SeisSol’s kernels on older Intel
architectures in detail in [5], we only focus on KNL in this article. Since KNL
has 32 architectural registers available and we know that N = 9 holds always
true, we decided to work in all cases on all columns of B and C simultaneously.
A naive implementation might load 8 rows of column k of A into a register
and then perform 9 FMA instructions, which broadcast the kth row of all 9
columns of B on the fly. After having processed all columns of A and rows of
B, we would hold a 8 × 9 sub-matrix of C in 9 accumulator registers which
are stored back to all 9 columns of C. However, such a kernel would suffer
many instruction level dependencies which block efficient execution. An optimal
AVX512 implementation needs to consider therefore two points: a) eliminating
dependencies by software pipelining to reduce pressure on micro-op level and b)
ensuring smallest possible instructions to reduce pressure on the frontend.

The problem of a) is twofold. First, the innermost kernel consists of 9 FMA
instructions which presumably run in throughput scenarios in 4.5 cycles as there
are 2 VPUs per out-of-order core with a latency of 6 cycles. This puts high
pressure on the core as the same nine registers (e.g. zmm23-31) will be reused
in the next iteration of the microkernel. As a solution we introduce a second
temporary accumulator for C, zmm14-22, which is used in every other iteration.
This ensures that the same register is only reused after at least 9 cycles. Be-
fore storing back to C we need to merge zmm23-31 and zmm14-23, however the
overhead in case of a larger K is minor. Second, we pipeline the loads of rows
per column k of A to get them as early as possible into the core’s pipeline. This
is easily doable as registers zmm0-13 are still unused: we implement a 6-register
ring-buffer of A column-vectors.

Issue b), ensuring smallest possible instructions, is more problematic since we
cannot afford to re-structure our data as it is normally done for large DGEMMs.
We therefore have strided accesses (offset is ldb times 8), when reading B in the

7 https://github.com/hfp/libxsmm



High Order Seismic Simulations on Intel Xeon Phi 9

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5 6

%
 p

e
a

k
 p

e
rf

o
rm

a
n

ce

order

HSX KNC KNL

2 3 4 5 6
order

HSX KNC KNL

Fig. 2. Standalone matrix kernel performance running out of a hot L1 cache for HSX,
KNC and KNL. Left: kernel performance for BO×9×BO matrix multiplication shapes;
right: kernel performance for BO × 9× 9 matrix multiplication shapes.

FMA-fused broadcast. If the offset exceeds 128 bytes, the length of the FMA
instruction increases from 7 to 11 bytes which puts avoidable pressure on the
fetch and decoder units. However, the instruction size can be fixed to 8 byte per
FMA if the x86 SIB scale-index-base (SIB) addressing mode is utilized. Since we
have spare general purpose registers, we can express the 9 column streams of B
by SIB with different base registers (to the first, fourth and seventh column of B)
and multiples ({1,2,4,8}) of ldb. Every 128th k we need to increase these pointers
by 128 to remain in the one-byte offset range. In fact 128 elements in k-direction
are possible as the AVX512 FMA instructions use a special encoding for the
memory offest: they scale the offset value by the datatype size. For example,
if the encoded offset is 55, then the offset used during the memory access is
55 · 8 = 440 (assuming double precision numbers).

Fig. 2 compares the performance for the most often used kernel operations
in SeisSol running single-threaded on HSX, KNC and KNL. HSX numbers are
taken from [5]. For both operator shapes (M×N×K), BO×9×BO and BO×9×9,
KNL clearly outperforms its previous generation (KNC). For BO×9×BO nearly
HSX performance is achieved. The governing reason for the lower performance
compared to HSX is KNL’s two-issue-wide pipeline: all instructions which are
not FMA instructions reduce the attainable FLOPS peak. Since these occur
relatively more often for the BO×9×9 operations, its performance is accordingly
lower on KNL than the performance of the BO × 9×BO shapes.

4.2 Out-of-Core Time Kernel

SeisSol’s wave propagation solver is implemented by two macro-kernels: the reg-
ular time kernel fused with the element-local volume kernel and element-local
part of the surface kernel (6), and the contribution of the face-neighboring ele-
ments (7). In the case of high-order simulations the access frequency to Qk, Bk or

Dk and the element-local Aξck , Â−,ik in the computation of the local contributions

is very low, as the data causing the majority of the compute (K̂ξc , K̃ξc , F̂−,i and
temporary buffers) can be cached in each tile. However, gathering the neighbor-
ing contributions, Bki orDki , requires significantly more bandwidth than Â+,i

k for
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order Qk Bk,Dk Aξck , Â
−,i
k , Â+,i

k K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h

2 MCDRAM MCDRAM MCDRAM MCDRAM
3 MCDRAM MCDRAM MCDRAM MCDRAM
4 DDR4 MCDRAM MCDRAM MCDRAM
5 DDR4 MCDRAM DDR4 MCDRAM
6 DDR4 MCDRAM DDR4 MCDRAM

Table 1. Placements for all orders and the different data structures of SeisSol;
DDR4/MCDRAM denotes if a particular data structure is placed in DDR4/MCDRAM.

higher orders as they are bigger but have the same access frequency. These access
patterns allow to overcome size limitations of the 16 GB MCDRAM by placing
the ’slow-running’ data structures in DDR4. Therefore, in FLAT mode and for
higher order runs, we store Bk and/or Dk of every element into MCDRAM on
the fly via the memkind library when computing them. As both memory types
are seamlessly integrated into the architecture, we simply change the place of
allocation, but not our macro-kernels. Thus pointers to Bk and/or Dk reference

memory physically stored in MCDRAM whereas Aξck , Â
−,i
k , Â+,i

k , Qk reside in the
DDR4 portion of the address space for orders O = 5 and O = 6. Additionally,
we hold unique matrices, K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h, including the 48 flux matrices
required for neighboring elements’ contribution to the surface kernel (7), in MC-
DRAM as well, as we expect local L2 cache evicts for higher orders. For lower
orders, two to four, the bandwidth requirements of SeisSol for the element local
matrices and Qk increase. We therefore allocate more data structures in MC-
DRAM. In fact, for orders O = 2 and O = 3, all important data structures are
placed in MCDRAM. Table 1 summarizes the used placements, when running
on KNL in FLAT mode.

4.3 Optimizing the Mesh Traffic and Prefetching

KNL’s last level cache (LLC) is not a shared cache level as it is implemented
by a 2D mesh of up to 36 1 MB large slices of L2 caches, c.f. Sect. 2. These
slices are kept coherent by a distributed tag directory in each tile’s CHA. As we
pointed out in the last section, for higher orders than four, the 48 flux matrices
F+,i,j,h approach (500 KB for order five) or even exceed the size (1.5 MB for
order O = 6) of one tile’s L2 cache. This can negatively effect the performance
of (7) for two reasons: a) especially for order O = 6 this results into a high rate
of CHA-to-CHA communication as the unstructured mesh causes unstructured
accesses to the flux matrices b) the hardware prefetcher cannot pick-up the
unstructured accesses. Keeping the last section in mind, we know that we still
have plenty of MCDRAM bandwidth available in higher orders. Therefore, we
place several copies, one per two tiles, in MCDRAM. This ensures that the mesh
traffic gets equally distributed and the access latency may not be limited by
one CHA in the entire mesh holding the directory entries for one particular
flux matrix. Additionally, we are using modified matrix kernel operations in (7),
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Fig. 3. Scaling of a setup with LOH.1 characteristics (c.f. Sect. 5) on KNL using global
time stepping. Shown is the separated performance of the element local contribution
(6) and the contribution of the face-neighboring elements (7) and the combined full
solver for order O = 6 (measured by a performance proxy application for single-node
SeisSol executions with errors of less than 1%). Additionally, we show the scaling of
the neighboring elements’ contribution to the surface kernel without our optimization
for KNL’s mesh and distributed LLC.

which allow for prefetching the flux matrix required for the next face-neighbor’s
contribution as well as the next Bki or Dki . For best performance these prefetches
are widely scattered throughout all eight matrix operations.

The effects of these tweaks are depicted in Fig. 3 when running a setup with
LOH.1 characteristics, c.f. Sect. 5, using order O = 6 in FLAT/QUADRANT
mode on KNL. The plot shows scaling curves for the local part (6), the neighbor
element’s contribution (using no optimization and all optimization discussed
above), and SeisSol’s overall scaling using the optimized neighboring contribution
(7). Its aforementioned performance tweaks roughly double the performance of
(7) and result in nearly perfect scaling. For all operations the biggest scaling
drop occurs when moving from one to two cores. The reason for this is the
shared L2 cache per tile which allows for reading one line per cycle and writing
a half line per cycle. This effects the performance of (7) more severe, since more
data (flux matrices, time integrated DOFs/time derivatives, flux solvers) are
read per element as in case of the element-local integrations. As for order O = 6
the local part (6) takes up roughly 70% of SeisSol’s total runtime, the overall
scaling follows the scaling of the (6). The full solver’s performance is only slightly
affected by the lower performance of (7).

5 Scenarios

In this section we evaluate the performance of three different scenarios. The
first scenario, LOH.1, is a wave propagation benchmark, the second setting sim-
ulates seismic wave propagation in the volcano Mount Merapi, while the last
configuration is a multi-physics dynamic rupture simulation of the 1992 Landers
earthquake.

Our performance comparisons are carried out on a socket-to-socket basis for
two reasons: a) the power per KNL-socket is only ≈50% higher than for a single-
socket HSX and b) Intel’s reference platforms for KNL and HSX pack 4 sockets
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Fig. 4. Illustration of the Layer Over Half-space (LOH.1) setup. Shown is the domain
Ω = [−15 km, 15 km]2 × [0, 17 km]. The upper part of the domain is covered by the 1
km thick layer (dark gray) and the remainder by the half-space (gray). The structure
of the mesh is illustrated by removing the elements in [0, 15 km]2 × [0, 10 km].

of each into 2U of rack-space. Furthermore, in case of KNL the socket power
includes also MCDRAM power, therefore for a single-socket comparison roughly
the same amount of energy is spent in the actual CPU. Additionally, SeisSol
is known to run large-scale equivalents of the used Mount Merapi and Landers
setups well to more than 100,000 cores [6, 7, 17].

5.1 LOH.1

The Layer Over Half-space benchmark [11] consists of two different material
regions. The higher resolved layer is located at the flat surface and reaches
1 km deep into the computational domain. We use material parameters ρ =
2600 kg/m3, λ = 20.8 GPa, and µ = 10.4 GPa for the layer. The half-space
covers the remaining part of the computational domain. Here, we use material
parameters ρ = 2700 kg/m3, λ = 32.4 GPa, and µ = 32.4 GPa. Fig. 4 illustrates
the 386,518-element mesh of the LOH.1 benchmark. The faces of the tetrahedral
elements are aligned to the interface of the layer and the half-space, and are
aligned to the boundary of the computational domain. Boundary conditions
are free-surface for the top of the computational domain (z = 0) and outflow
everywhere else. We use a point dislocation at (0, 0, 2km) as seismic source.

The upper plot of Fig. 5 depicts the speed-up over global time stepping
(GTS), executed on HSX, with respect to time-to-solution for the LOH.1 sce-
nario. In terms of FLOPS, this translates into roughly 1.2 TFLOPS of raw
performance on KNL which is ≈4× more than on HSX. However, we have to
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keep in mind, that we are using different sparse/dense switches for each operator
on HSX, KNC and KNL (see Ch. 4.1, [7]). Therefore, the only fair comparison
is time-to-solution. In this measure, KNL achieves a speed-up of 2.1 - 3.4 ×
depending on the chosen order of convergence in global time stepping (GTS)
runs and baseline architecture (upper plot of Fig. 5). We pad Qk, Bk and Dk
in their respective data structures on a per-element basis. On HSX we pad to
the next 32-byte boundary and on KNL/KNC to the next 64-byte boundary

and store Aξck dense on KNL, therefore the lower speed-up for lower orders (two
to four) is expected. Here, the execution is memory bandwidth bound. In the
case of O = 2, KNL/KNC have to move roughly twice as much data as HSX.
How heavily these low orders are bandwidth bound can also be seen from the
≈3× faster computations resulting from execution out of MCDRAM. For higher
orders the MCDRAM-benefit is measurable, but much smaller. It is worthwhile
noting that the LOH.1 benchmark fits into MCDRAM for every order. At or-
der 6 all data structures consume ≈ 6 GB. Therefore it does not matter if the
MCDRAM is used in the explicit FLAT or the implicit CACHE mode. When
enabling rate-2 local time stepping (LTS) in SeisSol, a theoretical speed-up of
2.8× over GTS can be achieved. For higher orders HSX can achieve close to
95% of this value and KNL can reproduce 95% of HSX’s LTS speed-up. The
slightly lower speed-up is due to the cluster sizes and their distribution: the first
and most often updated cluster contains less than 0.5 % of all elements whose
calculations have to be parallelized across 67 cores on KNL instead of 18 on
HSX. Nevertheless, when comparing to the HSX GTS baseline, KNL is able to
execute the LOH.1 benchmark up to 7.7 × faster.

5.2 Mount Merapi

Our second setting simulates seismic wave propagation in the volcano Mount
Merapi. Except for the smaller mesh, now having 1,548,496 tetrahedral elements,
this setting is identical to the one used in [6, 7]. The origin (0, 0, 0) of our setup
is located at mean sea level below Mount Merapi’s peak. For elements inside the
volcano, being in the sphere with radius 5.1 km and center (4 km, 0, 0), we use the
material settings ρ = 2400 kg/m3, λ ≈ 3.3 GPa and µ ≈ 4.7 GPa. All remaining
elements have paramters ρ = 2000 kg/m3, λ ≈ 2.3 GPa and µ ≈ 2.4 GPa. Two
different characteristic lengths for element sizes are used inside and outside the
volcano.

Fig. 6 illustrates three different clusters for rate-2 clustering (rl = 2 ∀l in (8)).
From the left to the right, we see the elements of clusters C2 = [2∆t, 4∆t[, C3 =
[4∆t, 8∆t[ and C4 = [8∆t, 16∆t[. The colors of the elements correspond to the
element-local CFL-imposed time step. Boundary conditions are free-surface at
the surface and outflow everywhere else. The faces of our tetrahedral elements are
aligned to the surface topography, the material contrast and the spherical shape
of the outflow boundary. We use a double-couple point source approximation at
(0, 0, 0) as seismic source in the Mount Merapi setup.

Compared to the LOH.1 setup, the larger mesh allows us to analyze our
out-of-core implementation in more detail. Fig. 7 depicts the time-to-solution
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Fig. 5. Normalized time-to-solution speed-up in the LOH.1 scenario for HSX, KNC
and KNL and orders 2-6. Upper plot: global time stepping, Lower plot: rate-2 local
time stepping.

Fig. 6. Three LTS clusters of the Merapi configuration. Shown are, from left to right:
C2 = [2∆t, 4∆t[, C3 = [4∆t, 8∆t[, C4 = [8∆t, 16∆t[.

when executing the Mount Merapi scenario, here rate-2 LTS can gain 4× in
theory with respect to time-to-solution. The increased mesh size is reflected
by KNC’s performance results: due to lack of memory we can not execute the
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Fig. 7. Normalized time-to-solution speed-up in the Mount Merapi scenario for orders
2-6 and (co)processors HSX, KNC and KNL over HSX global time stepping. Upper
plot: global time stepping, Lower plot: rate-2 local time stepping.

simulation for orders larger than two. In contrast, on KNL this limitation is
no longer present. As the Merapi scenario achieves LOH.1-comparable speed-
ups over HSX in FLAT, our out-of-core implementation is not limited by KNL’s
DDR4 bandwidth, e.g. for orderO = 6 the total consumed memory is 25 GB with
7.3 GB used in MCDRAM. For LTS the total memory consumption increases
to 30 GB and 11 GB of used MCDRAM. While in GTS every element k only
stores a buffer Bk for read-only access by face neighbors, an element k in LTS
configurations might have to store buffers Bk, or derivatives Dk, or both Bk and
Dk. Even the software-transparent CACHE mode of the MCDRAM helps a lot
compared to a pure DDR4 execution as its performance is always within 10% of
the manually optimized FLAT mode implementation. As a bottom line we can
conclude that KNL can execute the Mount Merapi scenario up to 12.1 × faster
than the HSX GTS baseline.
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Fig. 8. Wave field of the 1992 Landers scenario after 12.5 s of simulated time. Shown
is the fault system with a subsection of the unstructured tetrahedral mesh.

5.3 1992 Landers

The 1992 Landers setup is similar to the large-scale, production configuration
of [17]. However, in this work we only use a total of 466,574 tetrahedrons to
discretize the spatial domain. A higher mesh resolution is used to represent the
geometry of the fault system and the topography. We solve dynamic rupture
physics for faces aligned to the fault system, depicted in Fig. 8. Effectively, we
replace our Riemann solver, used in the surface kernel of Sect. 3, with a for-
mulation explicitly enforcing a Godunov state, which satisfies a certain friction
law [23]. Boundary conditions are free-surface at the surface and outflow every-
where else.

Material parameters in the domain are discretized using a one-dimensional,
layered velocity profile. This velocity profile leads to gradually increasing wave
speeds with increasing depth. The 1992 Landers setup uses global time stepping
and orders 2-6 for the seismic wave propagation component. For the dynamic
rupture computations a single quadrature point in time and multiple quadra-
ture points in space are used [17]. Note that our computational core supports
dynamic rupture physics only in GTS execution. While our considerations for
the LTS wave propagation component in [6] directly translate to dynamic rup-
ture elements, extensive benchmarking is required to validate local time stepping
in dynamic rupture workloads. Here, one can either decide to follow the LTS ap-
proach of the scheme in [6] directly and perform a minimal impact normalization
only. Other options could enforce neighboring dynamic rupture elements to have
the same time step or enforce a shared, minimal time step for all elements with
dynamic rupture faces. As in case of the LOH.1 scenario, all data structures
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Fig. 9. Normalized time-to-solution speed-up over HSX for KNC and KNL and orders
2-6 when simulating the 1992 Landers scenario using global time stepping.

would easily fit into MCDRAM any time as the total memory consumption at
order 6 is 7.1 GB.

The GTS performance of the 1992 Landers setup is provided in Fig. 9. As
this is a multi-physics scenario, we expect slightly lower performance than for
the earlier pure wave propagation runs on a many-core processor. This is due
to the fact that the dynamic rupture portion of the solver requires high scalar
performance. Here, KNL’s increased single-thread performance becomes visible.
KNL reassembles more than 92% of the pure wave propagation speed-up over
HSX whereas the previous generation KNC chip is only able to attain 83%. This
results into a relative performance which is comparable to HSX. KNL’s time-to-
solution speed-up for executing the 1992 Landers earthquake simulations is 2.5
- 2.9 × depending on the chosen order.

6 Conclusion

In this article, we presented a holistic optimization of SeisSol, a multi-physics
simulation package for seismic simulations, which tightly couples seismic wave
propagation, and dynamic rupture processes. First, we presented a deep-dive
into KNL’s architectural features and their challenges and opportunities for
high-performance software. After a brief recapitulation of SeisSol’s mathemati-
cal background, we discussed in detail how to exploit KNL’s two VPUs per core
efficiently and to leverage both memory subsystems for a novel out-of-core imple-
mentation in SeisSol’s high-order wave propagation solver. The KNL-optimized
implementation was evaluated for three different scenarios with distinct chal-
lenges and sizes. In case of global time stepping runs, KNL was able to out-
perform its predecessor, KNC, by 2.9 × and the current most powerful Intel
Xeon processor, E5v3, by more than 3.4 ×. Even more important, in contrast to
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KNC, KNL can maintain its speed-up over the E5v3 also when boosting time-to-
solution via local time stepping, resulting into a more than 12.1 × speed-up when
comparing against global time stepping runtimes on Intel Xeon E5v3. Up to 3.1
× faster execution on KNL is possible when taking local time stepping runtimes
as a baseline. In summary, our results have demonstrate that for best time-to-
solution we must not only rely on performance engineering (increasing achieved
FLOPS) but also investments in algorithmic design achieving best asymptotic
complexity (increasing the ratio of science/FLOP).
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